If we work within an accuracy of second order in v/c, we obtain, after
performing the integration, putting wf = 7/2, and subtracting the second of
formulas (18.5) from the first,

dv

(18.7)

(.2

This formula shows that if before rotation the « phase difference »
between both pairs of shutters is equal to zero, then after rotation the shutter
S will open with a delay Ar relative to the shutter S, while the shutter S
will open with the same anticipation relative to the shutter S%. Thus for the
same light paths, ¢, = d,, minimum photon fluxes will pass through both
coupled shutters.

Let us explain more clearly the difference between the independent
shutters and the cog-wheels connected by a rigid shaft. The relations between
the absolute time and the proper times elapsed on two clocks moving with
velocities v, and v, are given by formulas (18.5) only if the clocks are
independent. If we consider both rotating cog-wheels as clocks, we do not
have the right to use formulas (18.5) because the wheels are rigidly connected
by a common shaft and there is a unigue clock — the motor driving the shaft,
which, if placed at the middle, does not change its velocity during the
rotation. Thus, after the rotation, a change in the « phase difference »
between both cog-wheels cannot occur. If such a change appeared, then after
the rotation the shaft would be found to be twisted, which, obviously, is
nonsensical.

Thus the « coupled-shutters » experiment can « work » only when for
shutters two cog-wheels fixed on a common shaft are used. In such a case a
Newtonian time synchronization is realized, but the axis which one has to use
to obtain a registrable effect must be so long that it cannot be practically
constructed.

§19. THE QUASI-FOUCAULT
« COUPLED-MIRRORS » EXPERIMENT

With the aim of shortening the basis in Fizeau’s rotating cog-wheel
experiment, Foucault developed his rotating mirror experiment. Our
« coupled-mirrors » experiment represents a modification of this historical
Foucault experiment with whose help for the first time in history we have
measured the Earth’s absolute velocity.
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19.1. THE DEVIATIVE « COUPLED-MIRRORS » EXPERIMENT
In the summer of 1973 we carried out the deviative variant of the

« coupled-mirrors » experiment. The report on its performance is given in
Marinov (1974b).
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Fig. 19-1

In fig. 19-1 we give the scheme of this experiment. Let us have two disks
driven always exactly with the same phase difference (imagine the wheels of
a bicycle). On each disk two antipodal facets are cut and one is made a
mirror, while the other and the rest of the disk’s rim are not light reflecting.
The distance between both disks, called the rotating mirrors RM, and RM,, is
d. Intensive light from the source S, (or S.) is reflected by the semi-transpa-
rent mirror M, (M,) and, after passing through the semi-transparent mirror
N, (N.), is incident on the mirror facet of RM, (RM,). The light beam then
reflected by the semi-transparent mirrors N, and N, (¥, and N,) whose
distance from the rotating mirror is p, is incident on the mirror facet of RM,
(RM,). If the rotating mirrors are at rest, the light beam reflected by the
cylindrical mirror CM, (CM,) will illuminate screen S from the right (from
the left) at a certain point. The light path from the rotating mirrors to the
cylindrical mirrors is D and from the cylindrical mirrors to the screen is d/2.
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If the rotating mirrors are set in motion, then, because of the slit 7, only
the light which is reflected by RM, (RM,) when the latter is perpendicular to
the incident beam will reach RM, (RM,). However, for the time spent by light
to cover the distance d + 2p, the facet of RM, (RM,) which is parallel (an
exact parallelism is not necessary !) to the corresponding facet of RM, (RM.)
will rotate by a certain angle

5= Q, (19.1)

where & is the angular velocity of the rotating mirrors.

Suppose now that light velocity along the direction from RM, to RM,
(which we call « direct ») is ¢ — v and along the direction from RM, to RM,
(which we call « opposite ») is ¢ + v. In such a case during the time in which
the light pulse reflected by RM, will reach RM, the latter will rotate to an
angle 8 +a, while during the time in which the light pulse reflected by RM,
will reach RM |, the latter will rotate to an angle 8 — &, and we shall have

Bdod = (-2 4 Pyo, (19.2)
cFv ¢
from where (assuming v << ¢) we get
a=8Rdv/c?. (19.3)

Our apparatus takes part in the diurnal rotation of the Earth and in 24
hours it will make all possible angles with the component of the Earth’s
absolute velocity in the plane determined by the different positions of the
apparatus during the day; this component we shall refer to as the Earth’s
absolute velocity and designate by v.

Suppose first that the unit vector along the « direct » direction n is
perpendicular to v, and let us adjust the cylindrical mirrors so that the
chopped light beams will illuminate the same point O on the screen S. Now,
if n becomes parallel to v, both light beams will illuminate point P, and for
the distance between O and P we shall have (suppose ¢ = 7/4)

d
s=y?+2al), (19.4)
wherey = 2 (a + B)and 8 = 2 a (D/R) sec ¢; angles 8, v, and ¢ are shown
in fig. 19-1 and R is the radius of the cylindrical mirrors, Thus we have

sec g
R

The establishment of velocity v is to be performed as follows : In regular
intervals of time during a whole day we maintain such a rotational velocity £

Q 1
s=—£2—d’v[l+2D(7+ )] (19.5)
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that the chopped light beam from the left will always illuminate point O.
Then the light beam from the right will illuminate point O when n is per-
pendicular to v; it will be displaced over a distance 25 upwards when n 11 v
and over the same distance downwards when n 11 v.

In our factual set-up, both rotating disks were fixed on a common shaft
because the most important requirement of the « coupled-mirrors » experi-
ment is the maintaining of an equal phase difference between both rotating
mirrors during the Earth’s rotation. Two He-Ne lasers were used as light
sources. We used three cylindrical mirrors for each beam and such a combi-
nation of cylindrical mirrors which increases enormously the « arm » of a
light beam is called by us the « cylindrical mirrors indicator ». The light spots
were observed over two different screens because in our factual experiment
both rotating mirrors lay in two different parallel planes. According to the
calculation for our real adjustment it must be s = 0,62 mm forv = 100 km/s.
This displacement is large enough to be reliably registered. However the
inconstancy of the cylindrical mirrors radii and the trembling of the images
were too considerable, and our experiment could not lead to an accurate
quantitative measurement of v. The observed displacement was maximum
3 £ 2 hours after midnight and after noon and corresponded to a velocity
v = 130 = 100 km/s, the « direct » direction being the one after midnight.
The distance between both rotating mirrors was 7,2 m, the radius of the
cylindrical mirrors was R = 8 cm, and the velocity of rotation of the shaft,
taken from an old torpedo-boat, was £/2 = = 80 rev/s. The azimuth of the
apparatus was 84° and the observations were performed in July-August in
Sofia.

The error = 100 km/s was established in the following manner: An
observer maintained for 2-3 minutes one of the light spots in a certain
position, adjusting by hand a corresponding tension of a dec electromotor
which drives the shaft. Another observer registered the diapason of trembling
of the other light spot which was normally 2-3 mm. If this diapason Is
As = 2.48 mm, then the fluctuation error is = 100 km/s.

19.2. THE INTERFEROMETRIC « COUPLED-MIRRORS »
EXPERIMENT

The result obtained with our deviative « coupled-mirrors » experiment
was very inaccurate and the scientific community remained sceptical whether
we really registered the Earth’s absolute motion. For this reason, in the
summer of 1975 we carried out the interferometric « coupled-mirrors » ex-
periment, obtaining a very sure and reliable value for the Earth’s absolute
velocity. The report on its performance is given in Marinov (1978c).
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Fig 19-2

Let us have (fig. 19-2) a shaft with length ¢ on whose ends there are two
disks with radius R. On the rims of the disks, two mirrors RM, and RM. are
fixed which we call the rotating mirrors. Monochromatic parallel light emit-
ted by the source S, (or S.) is partially reflected and partially refracted by the
semi-transparent mirror SM, (SM,). The « refracted » beam is then reflected
successively by the mirror M, (M.), by the rotating mirror RM, (RM,), again
by M,, SM, (M., SM.), and the observer O, (0,) registers the interference
which the « refracted » beam makes with the « reflected » beam, the last one
being reflected by the rotating mirror RM, (RM.) and refracted by SM,
(SM,). We call the direction from RM, to RM, « direct » and from RM, to
RM, « opposite ».

Let us now set the shaft in rotation with angular velocity @ and let us put
in action the shutters S#, and Sh, which should allow light to pass through
them only when the rotating mirrors RM, and RM, are perpendicular to the
incident beams. This synchronization is performed by making the opening of
the shutters (= 10 " s) to be governed by the rotating shaft itself. Instead of
shutters, we also used simple slits placed along the light paths to the rotating
mirrors. If the « reflected » light pulse reaches RM, (RM,) when the second
mirror is in the position RM, (RM,), then, in the case of rotating shaft, the
« refracted » pulse will reach the second rotating mirror in the position RM,
(RM}) when the velocity of light is equal to ¢, and in the position RM;’
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(RM") when the velocity of light is equal to ¢ — v (¢ + v). Denoting by 8 the
angle between the radii of RM, and RM: (RM, and RM}) and by « the angle
between the radii of RM; and RM.' (RM; and RM;’), we shall have

d

CF Vv

§*xa=

Q, (19.6)

from where (assuming v << ¢) we get the result (19.3).

The difference in the optical paths of the « refracted » and « reflected »
light pulses in the cases of availability and non-availability of an « aether
wind » will be

IRQ
R il

(19.7)
where v, is the linear velocity of the rotating mirrors.

If the wavelength of the used light is A and we maintain such an angular
velocity £ = 2 wN (N is the number of revolutions per second) that the
observer O, should always register the same interference picture, then, du-
ring the rotation of the apparatus over 360° in a plane parallel to the direction
of the absolute velocity v, the observer O, should register a change in his
interference picture within

v A dRN

z=2 =8

wavelengths.

In our factual set-up, the « direct » beams are tangent to the upper parts
of the rotating disks, while the « opposite » light beams are tangent to their
lower parts. Thus the reflection of the « direct » and « opposite » beams
proceeds on the same planes of the mirrors. The « observers » in our factual
set-up represent two photoresistors which are put in the « arms» of a
Wheatstone bridge. The changes in both interference pictures are exactly
opposite. Thus in our apparatus the mirrors RM, and RM, are exactly parallel
and the photoresistors are illuminated not by a pattern of interference fringes
but uniformliy.

A very important difference between the deviative and interferometric
« coupled-mirrors » experiments is that the effect registered in the latter is
independent of small variations in the rotational velocity. In the interfero-
metric variant one need not keep the illumination over one of the photore-
sistors constant by changing the velocity of rotation when rotating the axis of
the apparatus about the direction of its absolute motion, but need merely to
register the difference in the illuminations over the photoresistors during the
rotation. This (together with the high resolution of the interferometric
method) is the most important advantage of the interferometric
« coupled-mirrors » experiment.
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Since the illumination over the photoresistors changes with the change
of the difference in the optical paths of the « refracted » and « reflected »
beams according to the sine law, then the apparatus has the highest sensiti-
vity when the illumination over the photoresistors is average (for maximum
and minimum illuminations the sensitivity falls to zero). Hence a change in
the velocity of rotation can lead only to a change in the sensitivity.

Let us consider this problem in detail. We suppose that the electric
intensities of the « reflected » and « refracted » beams when they meet again
on the semi-transparent mirror SM, (or SM.) are, respectively,

E, = FE_ sin(wf), E, = E_  sin(wf + @), (19.9)

max

where E,,,, is the maximum electric intensity which is equal for both beams,
w is the angular frequency of the radiation and ¢ is the difference between the
phases of the intensities in the « reflected » and « refracted » beams.

The resultant electric intensity after the interference will be

- i : P P _ . P
E=E +E, =2E_ sin(wt + > ) cos 5 = E usin (w! + 3 Y.

(19.10)

where E,,,, = 2 E,., cos (¢/2) is the maximum electric intensity (the

amplitude) of the resultant beam.
The energy flux density which will fall on the photoresistors will be

¢ ¢ P (] e
= — 2 = — F? =1 cos?— =" (] 4+ cosq),
8 T ampl 2 a max cos 2 maxc 2 2 ( q’,)

(19.11)
where /., is the maximum possible energy flux density.
The sensitivity is
£= —ii;‘i‘—sin'p (19.12)
and is highest forp = #/2,3 7/2, i.e., when the difference in the optical paths

of the « reflected » and « refracted » beams is (2 n + 1) (A/4), n being an

integer. The sensitivity falls to zero for ¢ = 0, 7, i.e., when this difference is
n (A/2).

If the resistance of the photoresistors changes linearly with the change in
the illumination (as was the case in our set-up), then to a small change df in
the energy flux density a change

I
dR =kdl = — k —%ﬁ sin @ do (19.13)
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in the resistance of the photoresistors will correspond, k being a constant. For
a change Ap = 7 the resistance will change with R = — k I, as it follows
after the integration of (19.13).

Since it is Ap = 27A/A, then for ¢ = w/2, where the sensitivity is the
highest, we shall have '
AR

A
=7 . 19.14
sl (19.14)

Substituting this into (19.8), we obtain

Ac? AR

S AR (19.15)
47°dRN R

v

The measuring method is : First, we make the axis of the apparatus to be
perpendicular to the absolute velocity v of the laboratory. We set such a
rotational rate N, that the illumination over the photoresistors to be mini-
mum. Let us denote the resistance of the photoresistors under such a condi-
tion by R, and R, (it must be R, = R.). We put the same constant resistances
in the other two arms of the bridge. so that the same current J, (called the
initial current) will flow through the arms of the photoresistors. as well as
through the arms of the constant resistors, and no current will flow through
the galvanometer in the bridge’s diagonal. Then we set such a rotational rate
N, that the illumination over the photoresistors is maximum and we connect
in series with them two variable resistors, R, so that again the intial current,
J,, has to flow through all arms of the bridge. After that we make the
illumination average, setting a rotational rate N = (N, + N.)/2, and we
diminish correspondingly the variable resistors. R, so that again the same
initial current has to flow through all arms of the bridge and no current
through the diagonal galvanometer. Now, we make the axis of the apparatus
parallel to the absolute velocity v and we transfer resistance AR from the arm
where the illumination over the photoresistor has decreased to the arm where
it has increased, so again the same initial current will flow through all arms
and no current through the diagonal galvanometer. The absolute velocity is
to be calculated from (19.15).

When the illuminations over the photoresistors were average a change
SR = 8.10°* Rin any of the arms of the photoresistors (positive in the one and
negative in the other) could be discerned from the fluctuation of the bridge’s
galvanometer and thus the resolution was

Ac? SR

= —  — = %= 17km/s. (19.16)
47*d RN R

1%
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The errors which can be introduced from the imprecise values of
d = 140 cm, R = 40,0 cm, and N = 120 rev/s are substantially smaller
than the resolution and can be ignored. To guarantee sufficient certainty we
take v = * 20 km/s.

The experiment was not performed in vacuum.

The room was not temperature-controlled, but it is easy to see that
thermic disturbances cannot introduce errors because of the complete sym-
metry of the method and of its rapid performance.

The whole apparatus is meunted on a platform which can rotate in the
horizontal plane and the measurement can be performed in a couple of
seconds.

The magnitude and the apex of the Earth’s absolute velocity have been
established as follows :

Fig. 19-3

During a whole day we search for the moment when the Wheatstone
bridge is in equilibrium if the axis of the apparatus points east-west. At this
moment the Earth’s absolute velocity lies in the plane of the laboratory’s
meridian. Thus turning the axis of the apparatus north-south, we can
measure v in the horizontal plane of the laboratory. The same is to be made
after 12 hours. As can be seen from fig. 19-3, the components of the Earth’s
absolute velocity in the horizontal plane of the laboratory for these two
moments are

v, = vsin (6 — ¢), v, = vsin(d + @), (19.17)
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where @ is the latitude of the laboratory and § is the declination of the apex.
From these we obtain

[vi' + v,» — 2 v, v, (cos’ @ — sin? ) ]'?

2 sin @ cos ¢ : (19.18)

Vi + V«

tan § = tan @ .

v, — V,

We take v, and v, as positive when they point to the north and as
negative when they point to the south. Obviously, the apex of the absolute
velocity points to the meridian of this component whose algebraic value is
smaller. Thus we shall always assume v, < v, and then the right ascension «
of the apex will be equal to the local sideral time of registration of v,. We
could establish this moment within a precision of about 30 minutes. Thus we
can calculate (with an inaccuracy not larger than * 5 min) the sideral time 7.,
for the meridian where the local time is the same as the standard time r,, of
registration, taking into account that sideral time at a middle midnight is as
follows :

22 September — o 23 March — 12n
22 October — 20 23 April — 14»
22 November — 4 23 May — 16"
22 December — 6" 22 June — 18"
21 January — 8 23 July — 20"
21 February — 10® 22 August — 22n

Our first measurement of the Earth’s absolute velocity by the help of the
interferometric « coupled-mirrors » experiment was performed on 12 July
1975 in Sofia (p = 42°41°, A = 23°21"). We registered

v, = — 260 + 20km/s, (7). = 182 37™ + 15m,
(19.19)
v, = + 80 = 20 km/s, (to)y, = 6"3]m % |5m,
Thus
v =279 £ 20km/s,
6= — 26+ 4, a = (t,), = 14" 23m + 2Qm, (19.20)

We repeated the measurement exactly six months later on 11 January
1976 when the Earth’s rotational velocity about the Sun was oppositely
directed. We registered

v, = — 293 = 20km/s, ()

6 24m = 15m,
(19.21)

v, = + 121 % 20 km/s, (t.), = 187237 + [5m,

I+
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Thus
v =327 = 20km/s,

§=—2I° + 4, a = (14,), = 14" 11™ = 20" (19.22)

For v and 8 we have taken the r.m.s. error, supposing for simplicity
@==45°. The right ascension is calculated from the moment when v, is
registered, i.e., from (z,),, since for this case (| v, | > | v, |) the sensitivity is
better. If our experiment is accurate enough, then 7, which is taken as the
second must differ with 11" 58™ from ¢, which is taken as the first, because of
the difference between solar and sideral days.

The magnitude and the equatorial coordinates of the apex of the Sun’s
absolute velocity will be given by the arithmetical means of the figures
obtained for the Earth’s absolute velocity in July and January :

v =303 = 20 km/s,
6= —22°5 % 4 a = 14" 17" = 20™, (19.23)

§20. THE ACCELERATED
« COUPLED-MIRRORS » EXPERIMENT

Since the masses of the material points are a measure of their kinetic
energy as well as of the gravitational energy to which they contribute, the
so-called principle of equivalence can be formulated, this asserts : Any gra-
vitational field in a small region around a given space point can be replaced
by a suitable non-inertial frame of reference (and vice versa), so that the
behaviour of material points in an inertial frame of reference in the presence
of a gravitational field would be indistinguishable from their behaviour in a
suitable non-inertial frame without the gravitational field.

Einstein generalized and made absolute this « mechanical » (or Gali-
lean) principle of equivalence (as he has done with the Galilean principle of
relativity — see §21), postulating that it is by no means possible to establish
whether the acceleration which is exerted on material points in a laboratory
has a kinematic (mechanic) character (thus being due to the accelerated
motion of the laboratory, for example, by thrust of a space ship) or a dynamic
(gravitational) character (thus being generated by the action of nearby mas-
ses, for example, by the Earth’s attraction).

According to our absolute space-time conceptions, such a generalization
of the principle of equivalence contradicts physical reality. The accelerated
« coupled-mirrors » experiment proposed in Marinov (1978t) can imme-
diately reveal the invalidity of Einstein’s principle of equivalence. Its essence
is as follows :
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