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The reason for this paper may best be il-
lustrated by a quote from Einstein’s fundamental
paper of 191434 By way of introduction, he
writes:

In the first place it seems that such an ex-
tension of the theory of relativity should be
turned down on physical grounds. Let K be
a Galilean-Newtonian coordinate system,
and let K’ be a coordinate system rotating
uniformly relative to K. Then centrifugal
forces would be in effect for masses at rest
in the K’ coordinate system, while no such
forces would be present for objects at rest in
K. Already Newton viewed this as proof
that the rotation of K’ had to be considered
as "absolute," and that K’ could not then be
treated as the "resting” frame, K. Yet as E.
Mach has shown, this argument is not
sound. One need not view the existence of
such centrifugal forces as originating from
the motion of k"; one could just as well ac-
count for them as resulting from the average
rotational effect of distant, detectable
masses as evidenced in the vicinity of K’,
whereby K’ is treated as being at rest. If
Newtonian mechanics disallow such a view,
then this could very well be the foundation
for the defects of that theory....

Einstein’s theory appears to have been
completely developed in the 1915 publications,
and so the obvious question is: is the new theory
really so free from the shortcomings of the New-
tonian one that according to its equations the rota-
tion of distant masses indeed does generate a
gravitational field that equals the centrifugal
field? One is probably tempted to consider a dis-
cussion of this question as vain labor since the

required equivalence appears to be guaranteed by
the general covariance of the field equations. The
matter is not that clear-cut, however, because the
boundary conditions for g, become important if
space is taken to be infinite. The fundamental
questions which have a bearing upon this have
been considered by deSitter3S and Einstein36 so
that we shall not concern ourselves with these
general equations. We will, rather, be concerned
with the mathematical development of a rota-
tional field of distant masses for a specific ex-
ample. To this end Einstein’s method of integrat-
ing the field equations serves admirably.37 For
our case we choose the field inside a uniformly
rotating, infinitesimally thin, hollow sphere of
uniform surface density.

In the first section of this paper (which may
be skipped without loss of comprehension in the
subsequent parts) the mean value theorem is ap-
plied to v for the inside of the spherical shell.
The second part discusses the movement of a
point mass in said field.

A. Theoretical Development: The Calculation
of g,,, for the Vicinity of the Central Point of a

Rotating Hollow Sphere
Symbol key:
a  radius of the hollow sphere
M  its mass
®  its angular velocity
X,y,z  Cartesian coordinates of an orbiting
point on the surface of the sphere
Xp» Yo- 29 coordinates of an interior point

X gravitational constant
mean interior density.
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In addition, mention must be made of as-
sumptions and approximations used in computing
the field strength. Near the center of the sphere
the field is assumed to be so weak that we need
only concern ourselves to first order in Yuv
(where v,y is defined by g,y = — ;v + Yuy)-
This allows Einstein’s approximation method to
be applied in integrating the field equations.
Secondly, it is assumed that the velocity com-
ponents of the affected masses are small relative
to the speed of light. In the limit, this would
yield the Newtonian result in which the first order
potentials may be ignored. This second assump-
tion, which is totally independent of the first, will
only be used to cancel third and higher orders in
v/c. Finally: the calculations relate to the vicinity
of the center of the sphere. Let r be the distance
between the point (X, Yo, Z;) and the sphere’s
center, and let R be the distance from said point
to the element of integration; then we shall
develop 1/R as a power series in r/a which we
shall terminate after the second order.

Einstein’s method of integration by ap-
proximation provides us with the following con-
ditions on g,:
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Since p, is the effective density of the
sphere, in order to maintain the tensor charac-
teristics of the integral in 3), we must substitute
the effective volume element for dV,. For this
the appropriate relation is (5):

.dx
dV,=Vgi—*dV. )

To integrate polar coordinates are used so that:
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where T, is the covariant mass energy tensor,
dV, us Lﬁe normal spatial volume element in the
integration space (in polar coordinates this is
r2drsin6d6do); and

RZ=(x-x)? + (y - yp)? + (2 - 2p)%

The coefficients gy, of the line element are re-
lated to the coordinates x;=x, X,=y, X3=z and
X4=it. ’

In accordance with the first assumption one
may substitute the contra-variant energy tensor
for the co-variant one, so that the former, ignor-
ing the potentials, is given by:

_dx,dx, (dx.)’ '
———o“dxd dx\ds/ "~

If the hollow sphere rotates around the
z-axis with angular velocity o, then for one of its
points with polar coordinates o, 6, ¢:

d__x_l___ Az =7iaosindsi

dx,  ta reesmysag, l
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dz, °

which, when substituted into 4), solves for Tuv as
follows:
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o
— a® w*sin®$ cos* g, o —iaowsindcosy
o o o
—itaosindcosg, o I
)
dVVg = a2 da sind do do. ®)

Lastly, 1/R must still be expressed in terms of the
integration variables. We choose the coordinate
system in such a way that the reference point (x,
Yo» Z) falls in the Z-X plane, so that the coor-
dinates are:

Xo=18in 8y, y5=0, zy=rcosq,.
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Neglecting higher order terms the binomial ex- allows us to write:
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Substituting 6), 7), 8) and 9a) into 3) yields:
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The absolute value of the term dx,/ds differs from unity only in terms of order w2a2. It also appears as a
factor in the first order of 7y v Thus it follows trivially from the scale element:
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Since we are dealing only in terms of order no higher than w?a2, we can set (dx,/ds)3 = i for all those Puv
which already contain the wa factor. To solve for this we make use of expression 11). We set pgda = o,
and 10) becomes:
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Substituting 9) into these for K and utilizing the integrals we arrive at:

. dx 5
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(or, via equation 11: M = 4nca?(1 + w?a%/3).)
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Thus we can obtain the values Yuv via 1) and 2),
and so solve for g,,,. Converting from polar to
rectangular coordinates and replacing Einstein’s
gravitational constant, x, by k = x/(8m) (where
c=1), the result is:

2kM
a

;. 2 &
{x +ato?— %(22‘,’—1—%*}},

M 2 '
Bez =1 _Z%'{‘+a20”—%(22o’—3_xo’)}'
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where all other g, vanish.

The transformation:
%, = x, cosa +- z, sina,

’ -
X, = — x; sina -4 %, cosa, (1

’ w S)
x3, — x3 5
Xy =2%,.

rids us of the special choice of our system of
coordinates (for we had placed our reference
point (X, Yo, Zo) in the Z-X plane). Then, via the

- 2kM| | sd’et oF i wa formula for transforming a covariant tensor of
Bu=—"I1+—— 1+ 3 -6—(2z,,_ —%o )}’ second order:
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The subscript 0 has been dropped from the
coordinates so that X, y, and z will from now on
signify the coordinates of the observer or
reference point.

B. Physical Section: The Motion of a Point
Mass Inside the Rotating Hollow Sphere

We shall develop the equations for the mo-
tion of a point mass in the vicinity of the center of
our rotating spherical shell. The field in this
vicinity is characterized by the coefficients of the
matrix Sy (Equation 16 of part A).

The law governing the motion for a point
mass is given by Einstein as the condition:

§fds=0,

or, upon expanding 6):38

d'zx.‘_— = dx,,dx
dst

’”,Ts_ds 1), ge=fouwd: {17)

For the field components ﬁpv there applies, ac-

cording to the first assumption:

p;,:—{‘”:}=[y:]=§(¥—;+l (18)
+ag#,_3gw). l

9%, ox,

We only want to consider motions of the
point mass which are small relative to the speed
of light. Thus we may neglect second order
terms in velocity. This allows us to conceal all
the right-hand terms of equations 17) in which the
index 4 does not occur. Moreover, we may re-
place the differentials in s by those in t. Recall-
ing that dx,/dt = i, makes equations 17) into:

&x. - e 4% cdx, Ygd.'(,‘> %
dtg—“\[’u*-(zt—"}'lvzx‘g[-i‘]am — L.

(19)

In what follows we will only need the com-
ponents of Ftl“ which involve at least one 4 in
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their indices. That leaves us with 16 terms which
(though they are not tensor components) in our
case will render themselves in accordance with
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an anti-symmetric tensor matrix of second order.
Then, in a stationary field, the partial derivatives
in x4 collectively disappear and the quantities
I'Yy may be written as follows:»
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;<bx1 ax,> Bi=o =3 x, 0xy) ¢ 2 3%, o)
. : g )
1384 agu) _T a_gz_t_aﬁf) i T I’*._____.I_._g‘_‘ :
R=2\3 3x) "*T2\ex, dxm) ¥ * 2 0%,
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If we combine values of Zuv from equation 16) we obtain the following result:
o sk, i,
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From equations 19) and 21) we now obtain
the equation of motion for our point-mass as fol-

lows:
8rM
X = — (s,
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SkM
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. 4kﬂf
5a

4kﬂ/[m

154
3EM |

152

oz +

a

— @x

'y | (a2),

wz ]

The right-hand terms of the equations repre-
sent the components of the force which the field
exerts on the point of unit mass. As one can se¢,
the first terms of the X and Y components cor-
respond to the Coriolis force, and the second
terms correspond to the centrifugal force. The
third equation yields the surprising result that the
centrifugal force possesses an axial component.
Its appearance in the field of the rotating sphere
may be explained as follows: as seen by an
observer-at-rest, those surface elements of the
hollow sphere which are nearest the equator have
a greater velocity, and hence also a greater ap-

parent (inertial and gravitational) mass than those
about the poles. The field of a rotating hollow
sphere of uniform surface density is therefore
conformable to the field of a spherical shell at
rest for which the surface density increases with
increasing polar angle, 6. That is, points away
from the equatorial plane are drawn towards the
equatorial plane.

(We also note in passing that it is easy to
visualize that in the interior of such a hollow
sphere of unequal surface density, forces appear
analogous to the centrifugal force.) It is well
known that using the theory of potentials, we can
show that in a hollow sphere, the gravitational
force disappears, provided that the surface den-
sity is uniform. The force of attraction of the sur-
face elements, which are within a solid angle, do,
is equal and opposite to the force exerted by the
surface elements situated in the opposite angle,
dw’. This is, of course, no longer the case for a
nonuniform surface density. Let AA’ be the
equatorial plane, then, at P, there are surface ele-
ments in do which, on the average, are closer to
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the equator and are thus of higher specific weight
than those of dw’. Hence a net force results in
the plane AA’, that is to say, an outward force
perpendicular to the axis of rotation, that be-
comes weaker the close the point P is to the
center.

$

The fact that in nature we only have been
able to observe a radial, but never an axial com-
ponent of the centrifugal force can be brought
into agreement with the results obtained here by
noting that the approximation of the heaven of
fixed stars by means of an infinitesimally thin
hollow sphere is certainly not physical. But ever
when we want to improve our approximation
(possibly by means of a mass distribution,) the
method of approximation used here will never ob-
tain a field that is completely equivalent to a real
centrifugal field. Such a field we can only obtain
if we assume all the cosmic masses (Milky Way
systems, etc.) are rotating and then to calculate
their gravitational influences. The solution for
the retarded potentials (equation 3) presupposes,
however, that at infinity the boundary conditions
Yuv = 0 pertain. As Einstein has shown in his
cosmological work,%0 these boundary conditions
are approximately fulfilled for a coordinate sys-
tem in which the fixed stars average at rest. Our
solution 16) therefore does not represent the field
of a hollow sphere "isolated in the cosmos," but
the field inside such a hollow sphere outside
which, at yet far greater distances, masses are
present that are, on average, at rest relative to the
chosen coordinate system.

The field represented by equation 16) is
hence, by way of example, the one that would ex-
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ist in the locality of the Sun’s center if, instead of
the Sun and all the planets, there would exist a
great hollow sphere with a size of about
Neptune’s orbit, which sphere would, relative to
the fixed stars, rotate with an angular velocity, .
If in the center of this sphere observers would
find themselves on a celestial body whose
gravitational field could be ignored and which
would be rotating around the same axis as the
hollow sphere, then these observers would per-
ceive centrifugal and Coriolis forces composed of
the effects of their own rotation and those of the
rotating hollow sphere. The influence of the field
of the hollow sphere on the centrifugal field
originating from the central body’s self-rotation
we shall examine below.

For that purpose we introduce a coordinate
system which is firmly tied to the rotating body
under consideration, which body rotates with an-
gular velocity @. This happens by means of the
transformation:

x . 4% :
% =xcosa’ 22+ sine’ Z2; =1z,
7 3

(23)

- Cx y
'=—xsine’ T“a}-ycosm'f; £y =4

As a result of this transformation, the quan-
tities g,4 which interest us are changed into:

e i [a)' (1 o 2kM>_w4kM]’
3a- - 3a

g2 =1% [w' (x + 2k-M) —® 4kﬂ] :

3a

3a
g44'=—1+2];i7[1+5a32m2—c30——223:,-{7

+(x,2+y,g){w,2<1+2121}1 . (24)
-—mw'ff—‘f-}-wz%}. J

In accordance with equations 19) and 20)
we construe from these quantities the equations
of motion:
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If here we take M=0, then we obtain the common
centrifugal-Coriolis field:
} (26)

If we take M#0 and v=0, then we have:

%.‘_—“
X:
Z =

I 2kMY ., 2k
=20 (x+ = )y-{—m’(x—{—T)x,_
» ; 2kM\ . i 354
j=—20(1+ 20 )2+ o (14 257)y,
f—o, (27)

which shows us how the inertial forces are in-
fluenced by the presence of the surrounding mass,
M. The centrifugal force and Coriolis force are
multiplied by the factor (1 + 2kM/a).

Finally, from equation 25) we can see that if
body and sphere rotate in the same sense, then
there results a reduction in the centrifugal and
Coriolis forces. If we posit:

= P3Gk +a) (28)
then the Coriolis force disappears. We could

define 4kM/(3(2kM+a)) as the "drag coefficient"
of the hollow sphere with respect to the Coriolis
force. The centrifugal force cannot be made to
disappear because the expressions within the
braces of 25) have no real roots for o if those ex-
pressions are set equal to zero. In a stationary
frame of reference (o’ = 0), the value of the
centrifugal force would be:

kM/(3a) @2 V(x2 + y2).

4+ o

: +2kf{>—wﬂ]i+{w"<
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If we, in the same manner, let the frame of
reference rotate with the hollow sphere, then for
small values of ®’ the centrifugal force will first
decrease and will reach a minimum when ©’/®
reaches the value of the drag coefficient. From
then on it grows again until ©’/w equals twice the
drag coefficient;*! then it again declines to the
original value it had at @’ = 0. With increasing
®’ it increases again until it reaches, for large ®’,
an amount which differs only slightly from that
which it would have without the presence of the
hollow sphere, (that is, ©*2N(x2 + y2)), in agree-
ment with our assumption that 2kM/a is much
less than unity. That the right-hand members of
the equations of motion 25) depend not only on
the difference w-®’ seems at first sight to con-
tradict the nature of the theory of relativity.
However, we should not forget that in the
problem discussed here we are not only dealing
with two bodies (the point mass and the hollow
sphere), but the fact is that as a result of the
boundary conditions yu\,:O, the more distant
masses have to be taken into account as a third
factor in determining the field; those masses
being at rest with respect to our initially-chosen
coordinate system.

Summary

By means of a concrete example it has been
shown that in an Einsteinian gravitational field,
caused by distant, rotating masses, forces appear
which are analogous to the centrifugal and
Coriolis forces. The peculiarities connected with
this special case are throughly discussed.



