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In a recently published paper*? one of us has
approximated the field inside a rotating hollow
sphere according to Einstein’s theory of gravita-
tion. This example seemed to be of principal in-
terest in answering the question whether indeed,
according to Einstein’s theory, the rotation of dis-
tant masses produces a gravitational field equiv-
alent to a centrifugal field. =~ From another
perspective it seems interesting now, by the same
means, to perform the not too difficult task of in-
tegrating the field equations for a rotating solid
sphere. In the Newtonian theory one can exactly
replace the field in the space surrounding a
(stationary or rotating) sphere of uniform density
with the field of a material point of equal mass.
Also, according to Einstein’s theory the field of a
resting sphere of incompressible fluid is equiv-
alent to that of a point mass;*3 but for a rotating
sphere this is not the case. In the latter case, as
shown below, there appear supplementary terms
corresponding to centrifugal and Coriolis forces.
Since the planets find themselves in the field of
the rotating sun, and the moons find themselves
in the field of their respective rotating planet, it
isn’t precluded that one could obtain a new
astronomical confirmation of Einstein’s theory by
observing the perturbations which result from the
supplementary  terms. The mathematical
development carried out below, gives rise to per-
turbations in the orbital elements of the planets
which perturbations are yet below the threshold
of observation** For the moons of Jupiter,
however, we obtain relatively large secular per-
turbations which may still be hidden within the

measuring error,

I. The Calculation of the guv for the Field of a
Rotating Solid Sphere

Symbol key:

1 radius of the hollow sphere
M  its mass

®  its angular velocity

x’,y’,z’ Cartesian coordinates for a point in the
integration space
X, Vi 7 coordinates of the reference point
k  gravitational constant
po mean density.

The calculation will be conducted in a man-
ner completely analogous to the work cited at the
beginning of the present paper. Einstein’s
method of integration by approximation is used.43
In this case, in developing the energy tensor of
mass, it is assumed that the velocities of the
field-inducing masses are sufficiently small com-
pared to unity (that is, the speed of light) so that
we may ignore the squares and products of their
component velocities. For the example discussed
in the earlier paper, this result differs in that the
terms containing the centrifugal force, which are
proportional to ®?2, are here omitted and that only
the Coriolis terms appear. This omission is fully
justified by the fact that 1w is very small for the
sun and all the planets since, again, the velocity
of light is 1. Moreover, in our case we consider
the field at a sizable distance from the surface of
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the sphere, where r’ signifies the distance from
the center of the sphere to the integration ele-
ment, and R denotes the distance from the point
of reference to the integration element. We can
then develop 1/R as a series involving r’/r which
we shall truncate after the second order. Here r is
the distance from the reference point to the
sphere’s center.

We proceed exactly as in the aforemen-
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We next develop the energy tensor of the force-
free matter:

dxudxy (ﬁ)’ ‘
ds
(2)
using the following expressions for the velocity
components:
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For dV,, we must, in accordance with equations
(7) and (8) of the former paper, write:

AVa=1 % ¥2d7 sin & d% dg'. (s)

For the purpose of expressing 1/R in terms of the
integration variables, we choose the coordinate
system in such a way that the point of reference
will become situated in the X-Z plane. Then, in-
troducing polar coordinates, we obtain:

x=rsin@, y=0, z=rcos 0

which yields:
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We next develop the binomial series and truncate
after the second order terms:
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(6)

‘We again denote the expression within the braces
by K and write:

1/R =K/, (6a)

If we now substitute equations (4), (5) and (6a)
into the last line of equation (1), we obtain the
following result:
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) sin ¥ K

sm2 ¥ singp’ K 62}

sm2 & cosg’ K
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Ignoring terms involving w2, we have:
(dx4/ds)3 =i (Cf.Eq. (11) in the former paper.)

If we substitute this expression as well as the ex-
pression for K from equations (6) and (6a) into
(7), we obtain, after evaluating the integrals:
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From this it follows, according to (1), that if we
reintroduce Cartesian coordinates, and replace

2k M
— o,
r
2kM
o, o
r
Bur =
o, )
4kM ly 4RM Ix
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II. The Equations of Motion for a Point Mass
in the Field of the Rotating Solid Sphere

In what follows, we shall develop the equa-
tions of motion for a point mass in the field of a
rotating solid sphere. Here we assume that the
velocity of the mass is so small that we may ig-
nore the squares and velocity products since we
assume them far below the speed of light. Let it
be emphasized that our objective is to find only

" Einstein’s gravitational constant by Newton’s

k=(x/(8r)), then:

2k M
Ei1=§=Fgsz=—1— pe
2k M
=1
Eo Z'I ; ©)
4kM lx
gz.;’:—‘—-t . 57’_2031

812 = §13=823=§14== f3s=—0O-

If we now rotate the system and so dis-
engage ourselves from our special choice of coor-
dinate system (where the reference point falls on
the X-Z plane), then we finally obtain the coeffi-
cient matrix:

o 4kM Q
! 57 72
o, —_— 4——'—5;-‘:—{—5'_? gl .
2k M . (10)
- 1)
: _I_szM
2 I} r

thos¢ perturbations in the planetary motions
which are caused by the rotation of the central
body. To obtain a sufficiently accurate
Einsteinian solution to the planetary problem, we
shall have to add the terms for the well-known
perihelion shift.46 The terms which originate
from the rotation of the central body follow from
the first-order approximation of Einstein’s theory,
while the aforementioned perihelion precession
was obtained from the second-order approxima-
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tion. Yet we cannot take the former into account
and ignore the latter. Why this is the case be-
comes clear from the following consideration.
Those additional terms by which the effective
force (developed below) differ from the New-
tonian are all proportional to wlv where v is the
velocity of the planet (specifically of a satellite),
while ol is the velocity of an equatorial point on
the central body. Now for the planetary system,
or for a planet-moon system, the following in-
equality holds:

v> ol (11)

If we consider terms in @lv, then we must
also consider terms in the equations of motion
which contain the squares and products of the
velocity components of the point mass. But if we
do this, then we can no longer confine ourselves
to first order in our approximations, but we must
also add the second order to the Newtonian terms
which are proportional to a/r (a=2kM). The
square of a planet’s velocity is likewise of the or-
der a/r. Considering terms involving the squares
of the velocities therefore also demands con-
sideration of second order terms. From this it fol-
lows via inequality (11) that the calculations here
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might have little validity. Yet we shall, in prac-
tice, be able to use them if we remember that all
the perturbations here considered are so small
that we are allowed to apply them additively. We
consequently reach the desired result of comput-
ing an orbit which takes into account all relativis-
tic influences when we base the calculation on
the equations used by Einstein in his work on
Mercury, that is, we add in the perturbation terms
computed in that work.

As was shown in the former paper, when we
avail ourselves of the aforementioned approxima-
tion, using the coordinates X=X, X,=Y, X3=Z, and
x,=it, then the general equations of motion:

d:x‘ _ 'dxl‘dx’
dst ~ H3s ds
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To first order in a stationary field, the six-
teen quantities I'% 54 are:
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Substituting these values for 'Yy into equation (12) we obtain the desired equations of motion:

j3=kM ﬂ’:’[ﬁx"’-{—yz—zj +

7 s r? 5 =
;\}:_k‘\[ wl? [ixa—{—y?‘—- 222 i 1—2——2,—.,-1——-Q,LZ (15)
’ r r Ls e s 7t ] ol
. kMal*12 23y —y% kM z
EETE Y ST 7 T
The last terms on the right-hand side repre-
sent the Newtonian force. As explained above, K=4kMwl2/5.

we have to replace them with the components of
force found in Einstein’s work on Mercury. The
first terms on the right-hand side are those pertur-
bation terms originating from the rotation of the
central body.

III. Calculation of the Perturbations Caused
by the Rotation of the Central Body

The perturbation terms in equation (15) are
defined as components X, Y and Z that are
caused by the rotation of the central body. We
transform them into three orthogonal components
S, T and W, where S shall be the radial, T the
transverse, and W the orthogonal (normal to the
plane of the orbit). We introduce the following
symbols normally used in astronomy:

a  semi-major axis,
e  eccentricity,

p=a*1-e2),
i= ZLyQIl inclination of the orbit,
Q=/X0Q longitude of the node,

®w=/XOIl  Longitude of the pericenter,

L, mean longitude at the time of epoch =
the mean longitude of a planet or satel-
lite at time t=0, (also ZXOP),

v = LIIOP true anomaly,

u=Z2Q0P=v+0-Q

U Orbital period in days,

n = 2n/U = V(kM/a3) = mean angular
velocity

C = 12¥ = n a2 V(1-¢?) = angular momentum
per unit mass.

Furthermore, for brevity we set the constant ap-
pearing in equation (15),

Figure 1: IT and P are the projections onto the
celestial sphere of the radius vectors of the
pericenter and planet respectively.

We now have:

x =17 (cos 1 cos  — sin #sin 2 cos ?)
¥y = 7 (cos % sin 2 4 sin % cos 2 cos ¢)
z=rysinusint
pcimcc ) o

1+ ecosv
xy—yx=~Ccost,

and, furthermore,
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S = X (cos # cos & — sin # sin2 cos ¢) +

+ Y (cos % sin2 + sin#t cos 2 cost) +Z sin ¢ sing
T = — X (sin ¢ cos & -+ cos # sin 2 cos 1) —

— Y (sin 4 sin 2 —cos ¢4 cos 2 cost) + Zcos t: sin ¢
W—=XsinQsint —Y cos 2sins 4 Z cost.

Substituting these expressions for X, Y and Z
from equations (15) into the formulas for S. T
and W, we obtain, after much manipulation:

. KCcost
b—_—_——-;—4——
K#cost KCecosisinv
T=—"Z="" 37
‘ 16
W= Ksm (2Csmu+rrcosu)— \xe)

KCs'mz(resmvcosu o
e e %).
o 5 + 2smn )

The variations in the orbital elements due to
the disturbing force are given by the following
equations:

da b
E MI—_—;(SBSHTU—{-T >
de 71— 22
at 1 lna - [SSH“ +T( ke +aa COSU”
di 1
d—t=EWr cos %
an I
o IVrsmu
= T 2
a--at.=1/—:1—a“ei |:’——S cos v+ T(I —}-%)ﬁn '0]-*-
1d2
+2sm T
z 5 T
aL, 2 L
. nat +1+Vx czdt+
1d2 .

+2V1——e-sxn’—ﬁ,

After substitution of equations (16) these equa-
tions become:

da
dt )
f{-e-:KCOS': sinv-9
dt Ca

2o =
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di _Ksint a
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In the customary manner for very small per-
turbations in the orbital elements and recalling
that u=v+m—Q, we therefore integrate to first or-
der and, letting K;=K/(na3), we obtain:
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Vi—e
A K, sint
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The interesting result which stems from this
is that the perturbations along the semi-major axis
disappear. While Ae and Ai are purely periodic,
the remaining variations of the elements contain
secular terms because of the relation v = nt + pe-
riodic terms. Thus
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K,
A== am™ (17)
A6 =AL, = (I__Z_Iilz)m(l 3sin3-—)nt.

IV. Numerical Results

The numerical result shows that in the solar
system these secular perturbations are below the
observational threshold, even over the time span
of a century; for they reach a maximum of 0".01
in the perihelion case of Mercury). The situation
is different for the case of a planet-satellite sys-
tem. Here we find a somewhat greater effect.
For numerical computation it is better to trans-
form (17). For this we propose the following
notation:

1 is the radius of the planet in cm.,

T is the rotation period of the planet,
measured in days,

a, is the semi-major axis of the planet’s or-
bitin cm.,

Uy is the planet’s revolutionary period in
days,

U is the satellite’s revolutionary period in
days,

J is the number of days in a year,

¢ is the velocity of light in cm/sec,

a is the semi-major axis of the satellite’s or-
bit.

The formulae (17) then yield:

. x2 ]2
=edls= 9021:U2( )

2428 =—4o

which give the perturbations in the elements of
the orbit of a satellite as induced by the rotation
of the planet and which perturbations are in
seconds of arc per century. In doing this we
posited that e2=i2=0, which is consistent with the
desired accuracy.

To these perturbations we must add the ones
discussed by Einstein (as per section 2 of this
paper) in his work on Mercury, which originate
partly from the direct effect of the planet and
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partly because of the sun. The former are given
by:

sz*] at
2402 Uz(l__.

4=o0, 46=4L,= 75 (19)

and the latter by:47

szt ] al

442 =Ax=A4L, = T2 U (20)

all of which are in seconds of arc per century.
Here we have ignored the eccentricities and in-
clinations of the planetary and satellite orbits. As
Table I shows, this procedure is justified because
of the extreme smallness of these terms. For all
the other satellites they are considerably smaller.

TABLEI

Earth's Moon +18,9 +7n,7
Both Martian Satellites +0%".7 +2%.7

The perturbations resulting from the rotation
of the planet are listed in Table II.

TABLEII
J“P—it“ ; Satus
’.VII,H x|z|3|4|5
+rs3+ o+ 1 i
P L S e L A

For all other satellites the terms remain below
0".5 per century.

The largest are those terms of formulae (19)
which are the Einsteinian pericentric shifts, as
shown in Table III.
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TABLE III
(42 = o)
| 46—aL, | 46—41,
Mars 1 22" Jupiter I 4" 28
2 ) 1 1 24
Saturn 1 5’ 46" 111 26
2 3 03 v 6
3 147 v 36 37
4 59 TUranus 1 22
5 25 2 10
6 3 3 3
7 2 4 I
10 2 Neptur S

Again, for other satellites, the terms are less than
0".5 per century.

If we now add the components of the pertur-
bation to obtain the complete relativistic effect,
then we consider the correction to Newton’s law
as per Einstein’s work on Mercury which he
found resulted from a purely radial perturbation.
Its components are:

3n2a3C v

S== 2c¢ 1%’

Sl Al

which are independent of the choice of coordinate
systems. Consequently, the corresponding per-
turbations (formulae (19) and Table III) may be
applied to any fundamental X-Y plane. The
variations of Einstein’s pericentric precession are
produced by a purely radial perturbation whereas
the variations resulting from the central body’s
rotation are not purely radial

Table IV summarizes all the relativistic in-
fluences. With regard to our moon and the two
satellites of Mars, only the relations (19) and (20)
appear, and hence the reference plane is the
planet’s orbital plane. For the satellites of Jupiter
and Saturn the reference plane is the planet’s
equatorial plane because for these planets rela-
tions (18) and (19) are required. The perturba-
tions of the satellites or Uranus and Neptune con-
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tain only relations (19) and therefore the
reference plane may be chosen as the ecliptic
plane.

TABLE IV

u 48 |do—=4L)| a4t
Erdmond . . . . 2" 25 265 13,95
Mars 1. Phobos. . I 23 0,5
2. Deimos. 1 .50 0,4
upiter I 4 10 29,5

Jep 11 = 2 120 18,9
111 o 26 12,5

v o 6 7.1
A\ 1 53" 32 SI 1m 5,48

Saturn 1. Mimas . 20 5 03 19,2
2. Enceladus 10 2 44 15.0

3. Tethys . 5 137 12,2

4. Dione 2 54 9.2

5. Rhbea . 1 2% 6,9

6. Titan . o 5 3.3

7. Hyperion ) 2 2,7

10. Themis . o 2 2,9
Uranus 1. Ariel , § o 22 3.7
2. Umbriel . o 10 2,7

3. Titania . ) 3 145

4. Oberon . || ) I 1,0
Neptun e o 5 2,1

With regard to the column labeled At, the
following remark must be made. The secular
variation in L, induces a change in the mean mo-
tion. For example. due to relativistic influences,
a certain correction must be made in the time be-
tween two distinct epochs such as, e.g., eclipses
of Jupiter’s satellites. For one century this cor-
rection is indicated in the last column of Table
IV, being obtained via the formula At=UAL/15.

The variations due to the rotation of a
central body are insignificant compared to the
variation due to Einstein’s pericentric effect. Yet
they have to be taken into account for the orbits
of the moons of Jupiter and Saturn. For the satel-
lites of the outer planets, we have calculated the
secular variations which derive from all the
relativistic effects. Though in some instances
such as the case of Jupiter’s fifth satellite, they
reach a considerable magnitude, yet it seems that
at the present time the observations are not ac-
curate enough to allow a proof of the theory of
relativity by means of the variations in satellite
orbits.



