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The Basic Law

The gravitational phenomena are the only
examples of action-at-a-distance for which no
changes have been detected in the space between
the component bodies. It is, therefore, under-
standable that we are confident that such changes
will someday be demonstrated. Thus we should
not view the subject as if gravitation is an excep-
tional case: just because such changes are not
now demonstrable, that does not mean that we
should doubt their existence. All known and un-
derstood evidence compels us to believe the op-
posite. However much that conclusion may rest
on missing experience and incomplete analysis, it
is first of all necessary to demonstrate that there
are facts which justify and complete the above
view, that is, that gravitational phenomena are
observable. Thus it is necessary to avoid all
hypotheses which go beyond the supposition that
the space between two gravitating masses par-
ticipates in the gravitational action. An earlier
but inadequate treatment of this question can be
found in an article entitled "Fernwirkungen," by

‘Drude, in the proceedings of the 69% Natur-
forscherversammlung.

Two gravitating masses are recognized by
their resistance to an increase of their separation.
Thus, though the masses themselves may either
be at rest or moving, whatever occurs in the space
between the bodies must be continuous. Clearly,
at any given position, or position plus equations
of motion, not only is the localized resistance
determined at that position, but the value of said
resistance can be determined anywhere between
the two bodies. The amount of work necessary to
overcome this resistance is that amount charac-
teristic of the gravitational field. Since we are
concerned with time dependent gravitational

changes in space, this work can be regarded as a -

fundamental quantity. Furthermore, in this con-
ceptual framework it makes no sense to speak of

the resistance of space, since such resistance
(inertia) is only present at the positions of the
masses. If one speaks of an event requiring time
to proceed from points 1 and 2, then it is equiv-
alent to saying that the event ceases to exist at
point 1 before it reaches point 2. Hence the
energy stored in the event would have to disap-
pear if it did not pass through the space between
points 1 and 2. This energy is equal in magnitude
to the aforementioned amount of work if the
event is related to the gravitational effect of the
two masses at their respective positions in space.
This is because the amount of work is a function
of the separation of the bodies as well as their
motion; and this work cannot demand to different
values for the energy.

For the sake of discussion, we shall call the
first mass the attracting one and the other we
shall refer to as the attracted mass. By the poten-
tial V of the attracting mass, m, we mean the
amount of work needed to separate the two
masses out to infinite separation. The total poten-
tial is then V. Assuming mass m to be at rest,
we shall assign it a position x, y, z in the coor-
dinate system centered on the attracting mass
with that mass assumed to be at rest.

Using Mach’s principle as outlined in his
"Prinzipien der Warmelehre" (Principles of Heat
Theory) we can calculate V. In particular, we
want it to be the average value of all the poten-
tials in some small neighborhood about a given
point. V is not a vector and for the above situa-
tion, it is also not a function of time. At the mass,
m, it has a value of f(x, y, z) while at some
nearby point it has a value of f(x+h, y+k, z+l).
Furthermore,

q,( /h2+k2+12>

can be defined as the average weight of this point
which, because of the small distances involved,
rapidly diminishes as the distance increases.
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Thus we find:
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ffff(x+h,y+k, z+1) ¢ (VA%+k?+1?) dhdkd]l

V=

fffq:( h%+k2+12) dhdkdl

If we develop f to second order via a Taylor series, and then integrate about the point x, y, z, we obtain:

fff ke dfk +££1 )¢ (VR?+k2+12) dhdkd] =

[JJ2L i 2L S

+4af dfkl\b( RZ+k?+1?%) dhdkdl =
axdz" tavd

fff\p(\/h2+k2+12)h2dhdkdl = [ffq:(m) k?dhdkdl =

fffw(m)lzcihdkdl :

If one takes:

fffq; (Vh%+k?+1?) h*dhdkdl

fffq;(m) dhdkdl

then there remains:

dey - g dZV)

VeVt —'( d}(z dyz dzz

and so,

a2y i d*v . d2v
dx? dy? dz*

= 0.

From this equation it follows that if p is a
constant and r is the distance between the masses,
that:

vt
xr

This leads us to Newton’s law of gravita-
tion, for V=pr is still in effect at the moment at
which the masses are released. The increase of
V,, coincides with the appearance of a force dT
and that, therefore, neither T nor V contain the
time-dependence at the moment of release. In
accordance with Lagrange’s general equations of
motion, when we replace the external force on
mass m by the negative value of the force exerted
by it, we obtain the following equations for the
acceleration of mass m:

Newton’s law will yield the potential which
the masses will achieve in their available time.
This condition is always fulfilled when the
masses, with a fixed distance between them, are
held at rest. This ceases to be the case if the
bodies recede from each other freely, and if the
aforementioned time is finite and measurable.
Two circumstances then influence the situation.
In the first place, at a distance r-Ar (Ar being
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positive for the receding case and negative for the
approaching case) the new potential must still be
inversely proportional to the new distance, r-Ar.
If this were not so, then it would be impossible to
understand how the stationary case could work.
But this potential does not immediately exert a
force on m, because the event which caused the
change in the potential needs some time to travel
from the attracting mass to the attracted mass. It
goes without saying that this is also the case if the
potential proceeded from the attracted to the at-
tracting mass. In the same way heat radiated
from one body to another requires some sort of
recoil or counterradiation. The potential emanat-
ing fro the attracting mass over the distance r-Ar
manifests itself at mass m only at some time in-
terval, At, later at which time the distance has be-
come equal tor.

In the second place, it is possible that in the
case of action-at-a-distance the potential would
immediately appear to its full extent, but because
space and time do play a role in the assumed ac-
tion, surely the potential needs some time interval
in order to effect the mass, m; that is, to allow m
to manifest its responsive motion. Only the as-
sumption of action-at-a-distance allows for simul-
taneity. The most important consequence of in-
troducing the concept of local action as a replace-
ment for action-at-a-distance is that it introduces,
for gravity, the same sort of event propagation
that is evidenced in other physical and chemical
processes. In the case of a thrust, the thrusting
force then consists of a succession of elementary
thrusts; in like manner, the change in potential
communicates itself to m as a rapid succession of
potential differentials.

In the case where the masses are at rest, the
potential passes m with its own characteristic

velocity and so the potential communicated to m

must vary inversely with distance. If the masses
move towards each other, then the travel time to
traverse their separation diminishes and so the
potential which is felt at m decreases by the ra-
tion of the potential’s velocity to said velocity
plus the relative velocity of the two masses.

Apart from its own velocity the potential
also moves with the velocity of the attracting
mass from which it emanates. The path, r-Ar,
covered by the opposing motions of the potential
and the attracting mass during a time interval, At,
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amounts to:

_Argp
At(c TS.E)'

where r=cAt. Thus one obtains for the distance
over which the potential is changing and the dis-
tance over which it is still inversely proportional
to distance:
1 Ar
r-Ar=r1- =—|.
( e A t)

Furthermore, the velocity with which the motions
are communicated to each other is:

o AE
AL

and therefore the potential, because it takes time
to communicate itself to m, turns out to be the
following ratio:

e
Thus we arrive at:

V- B -

r(l - %%}%)

As long as the distance, Ar, is small, so that Ar/At
is small relative to ¢ (the speed of propagation),
the differential, dr/dt, can be used. As a result, V
becomes:

V= E
ey
r(l c dt:)

7

which, when expanded to second order, becomes:

£
’ r[1+cdt+c2(dt)

Here the expression for V is not only a func-
tion of r, but also a function of the time derivative
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of r. From Lagrange’s equation we can solve for the acceleration of m so that, writing r* for dr/dt, we ob-

tain:
A4 1.d a8 G @ GV B _3_(££)2+ 6r d’r
m dr m dt dr’ dr dt dr’ r? c2\ dt c? dt?
The assumption that dr/dt << c is valid for One writes:
normal gravitational phenomena. If it were not 5
so, then Newton’s law of gravitation would not i(ﬂ)z s dr B
work the way it does. Under certain conditions, c?\dt P dte
however: for instance if the initial velocity im-
parted to the masses comes from outside of the Therefore:
system, then dr/dt may become so great that we .
are not allowed to equate dr/dt with Ar/At, nor d'x . px a-5,
could we restrict the expansion to second order. dt? >
The above formula is thus only valid as long as 5
the masses form an isolated system, not in- gy - g - B,
fluenced by external effects. In the important dt? 3

case at hand, this formula describes the change
which Newton’s law undergoes as a result of the
fact that the potentials between the masses are not
propagated instantaneously but require an interval
of time.

The Speed of Propagation

Depending upon whether measurements of ¢
are finite or infinite (as c is defined in the above
equations,) we shall conclude that the potentials
either need time to traverse the distance between
the masses or that no such time is needed. If the
latter should prove to be the case, then gravity is
an example of action at a distance. Two condi-
tions must be fulfilled. First, because c>>dr/dt,
we need to separate the terms for the acceleration
of the mass m from the total expression and to
make them compatible with observations. In the
second place, we need to estimate to some order
of magnitude the possible finite value of c. After
that, we need to test it. So far, the only examples
we have are the planets, and thus we shall assume
the sun to be the attracting mass and we shall take
on e of the planets to represent the attracted mass.
To simplify the matter, we shall take the sun to be
located at the origin of the coordinate system so
that the constant, |, has a greater value; contain-
ing the greater mass.

Multiplying the one equation by y and the other
by x, land subtracting, it follows that:

dy . dx
dt? dt*

=0

This is also the equation which is derived for
planetary orbits by Newton’s law. By integration
and converting to polar coordinates where 6 is the
angle between the radius vector and the abscissa
and L is a constant, we derive:

Y.

= L.
dt

“This can be written in the form:

i r2dd
L

and furthermore, with

X-cos® ad XL=5ind
T €

being substituted in the equations for
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dex d?y
dr? A dt?
these become:

sl
d?t._ =(1 F) cosbdf ,

- b i :
ddt L(l F) sin6df
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Integration yields:

dx

= - ——%sine + (M + f-%Fcosede),

gy . B B oog
s + Lcos(') + (N+ fLF81n6d6).

where M and N are constants of integration.
Since L = x(dx/dt) - y(dy/dt), the latter two equa-
tions yield: :

L

If F does not vanish, then the integrals in the
denominator take on progressively differing
values. If we assume that their values are known
at some given time, then we can take it that the
planet can be found somewhere on the ellipse
described by this equation and at that given time.
Let a be the semi-major axis and let b be the
semi-minor axis: also let € be the eccentricity and
take ® as the angle between a and the abscissa;
then the equation can be solved for:

r=a(l-g), r=a(l+e)
and r=b%/a in accordance to:

L,M+ f-%Fcosede

and

N+ f JI‘:Fsinede

S0 we obtain:

L=b~l—E ;
a

% - (M+f-%Fcos§dB)sin6 + (N + f—%Fsinedﬁ)éose

M+ f—%FcosedB = ——Z-\/ap. sinw,

N + f—%Fsiane = % ap Cosw .

It will be seen when we consider the con-
stancy of b/a2, that we can explain the motion of
the planet as if it were moving on an ellipse for
which € and ® are changing continuously. Only
if F=0 does this change stop. Therefore, it is this
change by which the finite value of ¢ becomes
demonstrable. Differentiating the last two equa-
tions conformably to 0, substituting in the value
for L and dividing the one expression by

= ap
cos0 = :
b
and the other by
sinb = ap ;
b

and solving for F yields:
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ecosw dw dt

sinw de dt _ do
cost dt dd

cosB dt do

681nm do dt
“sin® dt 4o’

_ cose de dt _
sin® dt do

Setting o = 8 — ® and combining the expressions
yields:
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In order to use this to obtain a relationship
for dw/dt which involves only observable
parameters one needs to express F in terms of the
derivative of r with respect to t. Since b/a2 is
constant, and using the relationships:

ﬁ =-etana do

dt dt

o, B

@ dw dt
Ok etana E‘
which, when substituted into the former equa-
tions, yields:
b2
e 00 00 00 S B
cosa dO dt 1+ecosa '
by ar _d8 dw
—_— cose— -esine— i
= ( m g e dt)
ar’ dw do dw
=-2-_[-ecosatana == -e€sina — +€sina——
bz( dt dt dt)
: do
= sine—
dt
—e—p‘—vzsina ;
d’r _ —J“l—Va81na— +ﬂcosa—— f—@cosa——
- Bal n EV cosa B _ &AL g, dO
y Dt dt dt b dt

__ &/ap
7 sina tane — dt

+ B cosa - SBR coqq O
r2 b dt
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e T T

bcosa dt

Therefore:

I

r?

bzcz

Hence the desired expression for dw/dt is:

er3/a do 3e?

<o 2E Al sin®a -

b/pcose dt bie

or, after substitutingin r= ———
a(l +ecosa)

_3€ap ginzg . 6€IV‘:”,cosa db SR oy

dt  re?

6er Jap dw 6€P ..o
be? cosa dt  rc?

2
b and b=ay/1-€*

s
and after dividing by: _Er_[_a__
b/pcosa
dw 6 do _ 3ep’/?cosa b
=- 1+e€cos - 1+ecosa)?sin’a
dt a(l—ez)cz( ®) 4t a5/2(1—62)c2(
6p3/2

25/2(1 -€2)5/2c?(1 +ecosa)* cos?a

In order to compare the calculated angular
speed dw/dt with observation, recall that the
above situation involves only one planet. So it
follows that only those effects that cause
perihelion precession, but are not due to perturba-
tions, can be considered. Only for Mercury is
this quantity known, and that value for the
perihelion precession is 41 seconds of arc per
century.. Such a small angle precludes direct ob-

servation of the slow but steady change in dw/dt.

Hence a longer integration time is needed. In the
last equation, € appeared but not de/dt and insofar

_as e>>de/dt, € can be taken as constant. Thus it is

sufficient to select the limits of integration as a=0
and o=2m because dw/dt almost repeats itself
with every subsequent revolution.

Multiplying dw/dt by dt, and using

a3/2(1 _€2)3/2
p/2(1 +ecosa)¥(de + dw) |

r*
=___ﬁ=
dt

in the second and third terms, and by properly or-
dering the terms and dividing, one arrives at:
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——6—‘5——(1+ecosa)cosza - 3%  gin’qcosa
all-e?)c? a(l-e?)c?
dw =
1+ —G-E———-(lwcosa) = ——6})'—(1+€coso:)cc'>s2a +— 3% sin?acosa
a(1-e?)c? a(1-€e?)c? a(1-e?)c?
Dividing the numerator and denominator through This is approximately equal to:
by:
o 4
all-e¥)c?: c? dw = 2V =W ~|da
C 2
—+2 (_g_ +2)
and ordering the terms with respect to increasing Y

powers of cosa and letting:

v=-ecosa +2cos?e +3€cos’a
w=3ecosa - 2cos?a - 3ecos?a

then

vw=-3e2cos?a + 8ecos’a +4(3e? -

27 3n(8 -€?)

o2 ( . )2'
—_—+2 (e

8l — +2
Y Y

=

Since y is small, the second order term
lunder the radical is very much less than the first
so that it can be ignored. The approximate ex-
pression derived for do is, therefore, still too
precise. That is, we could have ignored it from
the outset. Consequently,

Thus the perihelion precession value for one
revolution is:

27
. 1% vw
W= o2 2 da
GRS ) (cz )
bl e
¥ Y
or, because

1)cos*a -12ecos®a -9¢€%costa,

27

2
L apa =t

Y L

in which case the 2y is negligible relative to the
2myhy term. Finally,

’

C2= 61tE
a(l-e?)y

wherein

_ 4Am2a3
P‘_z— P
T
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if 7 is taken to be the period of the planet. For
Mercury we have:

a=0.3871 x 149 x 106 km,
€ =0.2056

T = 88 days

Y =4,789 x 107,

This yields:
¢ = 305,500 km/sec.

Foucault’s value for the velocity of light of
298,000 km/sec is the smallest value found to
date; the largest is found by Rémer’s method and
has a value of 308,000 km/sec. According to
Hertz, the velocity of electromagnetic waves is
320,000 km/sec. Thus the velocity with which a
gravitational potential is propagated agrees with
the velocity of light as well as with the velocity of
electric waves. At the same time, this result
guarantees that such a velocity does exist. Need-
less to say, no one can deny that the perihelion
shift of Mercury, 41" per century, is still possibly
the result of as yet unknown circumstances, and
that as such the value of c still could be infinite
when dealing with gravitational potentials; but it
should be kept in mind that the formula for the
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dependence of that potential on the calculated
speed has not been derived through some compli-
cated hypothesis but, instead, came about in a
natural way; however the result may differ from
those of previous investigators. It would be an
unusual coincidence if the 41" of Mercury should
exactly deliver the same velocity as that of light
and electricity without there being any spatial and
temporal propagation of gravity; for the medium
in which this propagation occurs is the same
space between the celestial bodies in which the
propagation of light and electricity happen. Even
the relatively large perihelion precession which is
required by the above analysis for the planet
Venus, namely 8"/century, cannot be used as
much of an objection unless a revision of the
analysis of the perturbations of that planet should
indicate that such a large value is definitely
precluded.*®  In this context the reader is
reminded that the secular acceleration of the
moon varies from 6" to 12". For the rest of the
planets the perihelion precessions are impercep-
tibly small. They can be readily obtained from
the standard tables and are the following values
per century: for the earth, 3".6, for the moon
0".06, for Mars 1".3, for Jupiter 0".06, for Saturn
0".002 and for Neptune 0".0007.



